Answer:
A.
28.75 μF
B.
300 Volts
C.
q
Step-by-step explanation:
A.
= 5 μF
= 15 μF
= Series combination of
and
Series combination of
and
is given as
![C_(s)=(C_(1)C_(2))/(C_(1)+ C_(2))](https://img.qammunity.org/2020/formulas/physics/college/1vj0vgwt4ko4j8yl8k0mbov48ve2n8qjus.png)
![C_(s)=((5)(15))/(5 + 15)](https://img.qammunity.org/2020/formulas/physics/college/gqsfqsswlble4cakl3spdtr16z0e71a4be.png)
= 3.75 μF
= 25 μF
= Equivalent capacitance
Equivalent capacitance is given as
=
+
![C_(3)](https://img.qammunity.org/2020/formulas/physics/college/18hz7he1pha3y4rhjdvmnq9nki2vupbrcs.png)
= 3.75 + 25
= 28.75 μF
B.
C = capacitance of the capacitor = 10 F
V = Voltage needed on the capacitor
m = mass of the car = 1000 kg
v = speed of the car = 30 m/s
Using conservation of energy
Energy stored by capacitor = Kinetic energy of car
(0.5) C V² = (0.5) m v²
(10) V² = (1000) (30)²
V = 300 Volts
C.
C = capacitance of each capacitor
q = charge stored by capacitor
V = battery voltage
If one of the capacitor is removed, the potential difference across each capacitor is same as battery voltage. hence the resulting charge on each capacitor remains the same as "q"