136k views
4 votes
Write the​ point-slope form of the line satisfying the given conditions. Then use the​ point-slope form of the equation to write the​ slope-intercept form of the equation. Slopeequals6​, passing through ​(negative 2​,5​)

1 Answer

3 votes


\bf (\stackrel{x_1}{-2}~,~\stackrel{y_1}{5})~\hspace{10em} slope = m\implies 6 \\\\\\ \begin{array}c \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-5=6[x-(-2)]\implies y-5=6(x+2) \\\\\\ y-5=6x+12\implies y=6x+17\qquad \impliedby \begin{array}c \cline{1-1} slope-intercept~form\\ \cline{1-1} \\ y=\underset{y-intercept}{\stackrel{slope\qquad }{\stackrel{\downarrow }{m}x+\underset{\uparrow }{b}}} \\\\ \cline{1-1} \end{array}

User OLas
by
5.8k points