229k views
3 votes
Evaluate the circulation of G⃗ =xyi⃗ +zj⃗ +3yk⃗ around a square of side length 9, centered at the origin, lying in the yz-plane, and oriented counterclockwise when viewed from the positive x-axis.

2 Answers

3 votes

Given that


\vec G(x,y,z)=xy\,\vec\imath+z\,\vec\jmath+3y\,\vec k

has a fairly simple curl,


\\abla*\vec G(x,y,z)=2\,\vec\imath-x\,\vec k

we can take advantage of Stokes' theorem by transforming the line integral of
\vec G along the boundary of the square (call it
S) to the integral of
\\abla*\vec G over
S itself. Parameterize
S by


\vec s(u,v)=u\,\vec\jmath+v\,\vec k

with
-\frac92\le u\le\frac92 and
-\frac92\le v\le\frac92. Then take the normal vector to
S to be


\vec s_u*\vec s_v=\vec\imath

so that


\displaystyle\int_(\partial S)\vec G\cdot\mathrm d\vec r=\iint_S(\\abla*\vec G)\cdot(\vec s_u*\vec s_v)\,\mathrm du\,\mathrm dv


=\displaystyle\int_(-9/2)^(9/2)\int_(-9/2)^(9/2)(2\,\vec\imath)\cdot(\vec\imath)\,\mathrm du\,\mathrm dv=\boxed{162}

User Jhonnatan
by
6.1k points
3 votes

We have,the circulation of
G=xyi+zi+3yk around a square of side 3, centered at the origin, lying in the yz-plane, and oriented counterclockwise when viewed from the positive x-axis is


\int_(\theta) G.dr=162

From the Question we have the equation to be


G=xyi+zi+3yk

Therefore


\triangle *G=\begin{Bmatrix}i & j & k\\(d)/(dx) & (d)/(dy) & (d)/(dz)\\xy&z&3y\end{Bmatrix}

Where

For i


i((d)/(dy)*3y-((d)/(dz)*xy))\\\\2i

For j


j((d)/(dx)*3y-((d)/(dz)*xy))


0j

For z


z((d)/(dy)*xy-((d)/(dx)*z))


xk

Therefore


\triangle *G=2i-xk

Generally considering
\theta as the origin

We apply Stoke's Theorem


\int_(\theta) G.dr=\int_(\theta)(\triangle *G) i ds


\int_(\theta) G.dr=\int_(\theta)(=2i-xk) i ds


\int_(\theta) G.dr=\int2ds


\int_(\theta) G.dr=2*9^2


\int_(\theta) G.dr=162

Therefore

The circulation of
G=xyi+zi+3yk around a square of side 3, centered at the origin, lying in the yz-plane, and oriented counterclockwise when viewed from the positive x-axis is


\int_(\theta) G.dr=162

User Zola
by
5.8k points