Answer:
![\large\boxed{y=(3)/(5)x-2}](https://img.qammunity.org/2020/formulas/mathematics/high-school/ugy4q8i70q4ne0lsmgnobfxgjliik0fg2b.png)
Explanation:
The slope-intercept form of an equation of aline:
![y=mx+b](https://img.qammunity.org/2020/formulas/mathematics/high-school/8nudzfk4b5l0arb9iixag2w8am6zn99zlr.png)
m - slope
b - y-intercept
The formula of a slope:
![m=\dfraxc{y_2-y_1}{x_2-x_1}](https://img.qammunity.org/2020/formulas/mathematics/high-school/px7017zfwzjugyq8oljuf9wvlfayw7p7k9.png)
From the graph we have the points:
(-5, -5)
y-intercept (0, -2) → b = -2
Calculate the slope:
![m=(-2-(-5))/(0-(-5))=(3)/(5)](https://img.qammunity.org/2020/formulas/mathematics/high-school/efy6azt3ctfg38g1txtrobox005oj2eycj.png)
Put the value of the slope and the y-intercept to the equation of a line:
![y=(3)/(5)x-2](https://img.qammunity.org/2020/formulas/mathematics/high-school/1ppjivkop9tkt7v86ixb02in32kd13nkg2.png)