Answer:
The initial number of bacteria is 371.
Step-by-step explanation:
Let P represents population of the bacteria and t represents time,
According to the question,
![(dP)/(dt)\propto P](https://img.qammunity.org/2020/formulas/biology/college/h3g0jqbf7z52gbvterycjrxoa6cwhlmeff.png)
![\implies (dP)/(dt)=kP](https://img.qammunity.org/2020/formulas/biology/college/9nau6zr7auleoss6y1vvrw08id89p3reto.png)
Where, k is constant of proportionality,
![(dP)/(dt)=kdt](https://img.qammunity.org/2020/formulas/biology/college/7jn98vpqgwqhx4ll30how3e3ngwochq1g7.png)
Integrating both sides,
![ln P=kt+C](https://img.qammunity.org/2020/formulas/biology/college/c2n4k1847ao4yto1ft4fd344yagk2yh3sm.png)
![P=e^(kt+C)](https://img.qammunity.org/2020/formulas/biology/college/7qu3rqth0sg1f8xinrllid8wuo2hvlmmwc.png)
![P=e^C e^(kt)](https://img.qammunity.org/2020/formulas/biology/college/mtrpeforz642icnouzd2hkjah25mno4kwn.png)
( Let
)
If t = 0,
![P=P_0](https://img.qammunity.org/2020/formulas/biology/college/lr00755cobgt86jni9h2j3z2r13xbfazmw.png)
That is,
is the intial population.
Since, when t = 3, P = 500 and when t = 10, P=4000
![500=P_0 e^(3t)](https://img.qammunity.org/2020/formulas/biology/college/6vvifevvsmsduuo6gimg9m2q9tx1grpa83.png)
![4000 = P_0 e^(10t)](https://img.qammunity.org/2020/formulas/biology/college/qi7zz6zosjrmcxmnf27ks6q0l0h5615rf9.png)
![\because (4000)/(500)=( P_0 e^(10t))/( P_0 e^(3t))](https://img.qammunity.org/2020/formulas/biology/college/cb6xgdkv5t6pk4qj4623pmg862hyiib7io.png)
![8=e^((10-3)t)=e^(7t)\implies 7t = ln(8) \implies t=(ln(8))/(7)=0.297063077383\approx 0.2971](https://img.qammunity.org/2020/formulas/biology/college/f7s7bf715u03qgaa29wv7n6il58txa72uz.png)
![\implies 500=P_0 e^(0.2971)\implies P_0=(500)/(e^(0.2971))= 371.484855838\approx 371](https://img.qammunity.org/2020/formulas/biology/college/c2p8l4lhwvrnzlxiphz8otr609uwv74l4f.png)
Hence, initial population is approximately 371.