Answer:
Part 1)
![csc(\theta)=-(√(85))/(7)](https://img.qammunity.org/2020/formulas/mathematics/high-school/hjgchgmpen0x0uzfli8r1kglfyulckbskw.png)
Part 2)
or
Part 3)
![tan(\theta)=-(7)/(6)](https://img.qammunity.org/2020/formulas/mathematics/high-school/vbuf0oob8ygtq9kpgjmgayog1v5fk67d4j.png)
Part 4)
or
![cos(\theta)=(6√(85))/(85)](https://img.qammunity.org/2020/formulas/mathematics/high-school/lb7vacj2wgdsqjhonoe388im4cwdjbp2ln.png)
Part 5)
![sec(\theta)=(√(85))/(6)](https://img.qammunity.org/2020/formulas/mathematics/high-school/yzbnabfvxp7av25je823wcrns7u4hz17wm.png)
Explanation:
we know that
The angle theta lie on the IV Quadrant
so
sin(θ) is negative
cos(θ) is positive
tan(θ) is negative
sec(θ) is positive
csc(θ) is negative
step 1
Find the value of csc(θ)
we know that
![1+cot^(2)(\theta)=csc^(2)(\theta)](https://img.qammunity.org/2020/formulas/mathematics/high-school/egjw50y9vu5efuzu5caqz7hsw04jvb0osw.png)
we have
![cot(\theta)=-(6)/(7)](https://img.qammunity.org/2020/formulas/mathematics/high-school/vhcuun1k6sol1i4la51glz4d54w4xu1fef.png)
substitute
![1+(-(6)/(7))^(2)=csc^(2)(\theta)](https://img.qammunity.org/2020/formulas/mathematics/high-school/oz3nrnpfqbun1msda3xstq27i1ct7pcoyz.png)
![1+(36)/(49)=csc^(2)(\theta)](https://img.qammunity.org/2020/formulas/mathematics/high-school/4893en41ilfg24glarfe2fu5j4sqfw68nt.png)
rewrite
----> remember that is negative
step 2
Find the value of sin(θ)
we know that
![csc(\theta)=(1)/(sin(\theta))](https://img.qammunity.org/2020/formulas/mathematics/high-school/r3xcb0af6c8f0kmh1kx6lhhiu22kai3u8c.png)
we have
therefore
or
step 3
Find the value of tan(θ)
we know that
![tan(\theta)=(1)/(cot(\theta))](https://img.qammunity.org/2020/formulas/mathematics/high-school/5ywv98qt2vy316b54l4u1d4u2m87ds5bxz.png)
we have
![cot(\theta)=-(6)/(7)](https://img.qammunity.org/2020/formulas/mathematics/high-school/vhcuun1k6sol1i4la51glz4d54w4xu1fef.png)
therefore
![tan(\theta)=-(7)/(6)](https://img.qammunity.org/2020/formulas/mathematics/high-school/vbuf0oob8ygtq9kpgjmgayog1v5fk67d4j.png)
step 4
Find the value of cos(θ)
we know that
![sin^(2)(\theta)+cos^(2)(\theta)=1](https://img.qammunity.org/2020/formulas/mathematics/high-school/sggrwuusfy3hwge92sdue7fpcc4m0nx1so.png)
we have
substitute
![(-(7)/(√(85)))^(2)+cos^(2)(\theta)=1](https://img.qammunity.org/2020/formulas/mathematics/high-school/kg6numlakg5ayifvdy84vxn8ncc04e8pu3.png)
![(49)/(85)+cos^(2)(\theta)=1](https://img.qammunity.org/2020/formulas/mathematics/high-school/nupij6e5ctc7lffy51zniciss6026e1vf2.png)
![cos^(2)(\theta)=1-(49)/(85)](https://img.qammunity.org/2020/formulas/mathematics/high-school/8dnrgzcp69f8jlzppz046nmdrg7lssr5ze.png)
![cos^(2)(\theta)=(36)/(85)](https://img.qammunity.org/2020/formulas/mathematics/high-school/xokbi56anfzimjlquclne94lnlhlfdviph.png)
------> the cosine is positive
or
step 5
Find the value of sec(θ)
we know that
![sec(\theta)=(1)/(cos(\theta))](https://img.qammunity.org/2020/formulas/mathematics/high-school/p3u8tqyrg411jhxlj6d1g3yty86rylrgdz.png)
we have
![cos(\theta)=(6)/(√(85))](https://img.qammunity.org/2020/formulas/mathematics/high-school/fao5scoox1bnzm0wtfmtpqghwzzo84g51i.png)
therefore
----> is positive