49.9k views
0 votes
Find the sum of each pair of vectors and match it with the magnitude of the resultant vector. PLEASE HELP. Information on the picture

Find the sum of each pair of vectors and match it with the magnitude of the resultant-example-1
User Steward
by
7.1k points

2 Answers

3 votes

Answer: 1. 5.83 m/s > magnitude 4.5 m/s, direction angle 55˚ magnitude 3

m/s, direction angle 135°

2. 4.05 m/s > magnitude 3.5 m/s, direction angle 35˚

magnitude 4 m/s, direction angle 150˚

3. 5.29 m/s > magnitude 6 m/s, direction angle 120˚

magnitude 2 m/s, direction angle 240˚

4. 3.32 m/s > magnitude 3 m/s, direction angle 70˚

magnitude 5 m/s, direction angle 210˚

Refer to picture below.

Step-by-step explanation: I got this correct on Edmentum.

Find the sum of each pair of vectors and match it with the magnitude of the resultant-example-1
User Zubatman
by
7.2k points
0 votes

1. Magnitude 3.5 m/s, direction angle 35°, magnitude 4 m/s, direction angle 150°.

Matches to 4.05 m/s

First of all, let's write this statement in vector form. For the fist vector we have:

Magnitude 3.5 m/s, direction angle 35°:

Let's say this is vector
\vec{A}, so the magnitude is:


\left|\vec{A}\right|=3.5m/s

And the direction is defined as:


\theta = 35^(\circ)

So the components are:


Ax=\left|\vec{A}\right| cos\theta \\ \\ Ax=3.5 cos35^(\circ)=2.86m/s \\ \\ \\ Ay=\left|\vec{A}\right| sin\theta \\ \\ Ay=3.5 sin35^(\circ)=2m/s

So vector
\vec{A} is:


\vec{A}=2.86i+2j

For the second vector:

Magnitude 4 m/s, direction angle 150°:

Let's say this is vector
\vec{B}, so the magnitude is:


\left|\vec{B}\right|=4m/s

And the direction is defined as:


\theta = 150^(\circ)

So the components are:


Bx=\left|\vec{B}\right| cos\theta \\ \\ Bx=4 cos150^(\circ)=-2√(3)m/s \\ \\ \\ By=\left|\vec{B}\right| sin\theta \\ \\ By=4 sin150^(\circ)=2m/s

So vector
\vec{B} is:


\vec{B}=-2√(3)i+2j

THE SUM OF THESE TWO VECTORS IS:


\vec{R}=\vec{A}+\vec{B}=(2.86i+2j)+(-2√(3)i+2j) \\ \\ \boxed{\vec{R}=-0.60i+4j}

THE MAGNITUDE OF THE RESULTANT VECTOR IS:


\left|\vec{R}\right|=√(Rx^2+Ry^2) \\ \\ Rx=Ax+Bx \\ \\ Ry=Ay+By \\ \\ \\ \left|\vec{R}\right|=√((-0.6^2)+(4)^2) \\ \\ \boxed{\left|\vec{R}\right|=4.05m/s}

2. Magnitude 4.5 m/s, direction angle 55°, magnitude 3 m/s, direction angle 135°.

Matches to 5.83 m/s

Magnitude 4.5 m/s, direction angle 55°:

Let's say this is vector
\vec{C}, so the magnitude is:


\left|\vec{C}\right|=4.5m/s

And the direction is defined as:


\theta = 55^(\circ)

So the components are:


Cx=\left|\vec{C}\right| cos\theta \\ \\ Cx=4.5 cos55^(\circ)=2.58m/s \\ \\ \\ Cy=\left|\vec{C}\right| sin\theta \\ \\ Cy=4.5 sin55^(\circ)=3.68m/s

So vector
\vec{C} is:


\vec{C}=2.58i+3.68j

For the second vector:

Magnitude 3 m/s, direction angle 135°:

Let's say this is vector
\vec{D}, so the magnitude is:


\left|\vec{D}\right|=3m/s

And the direction is defined as:


\theta = 135^(\circ)

So the components are:


Dx=\left|\vec{D}\right| cos\theta \\ \\ Dx=3 cos135^(\circ)=-(3√(2))/(2) \\ \\ \\ Dy=\left|\vec{D}\right| sin\theta \\ \\ Dy=3 sin135^(\circ)=(3√(2))/(2)

So vector
\vec{D} is:


\vec{D}=-(3√(2))/(2)i+(3√(2))/(2)j

THE SUM OF THESE TWO VECTORS IS:


\vec{R}=\vec{C}+\vec{D}=(2.58i+3.68j)+(-(3√(2))/(2)i+(3√(2))/(2)j) \\ \\ \boxed{\vec{R}=0.46i+5.80j}

THE MAGNITUDE OF THE RESULTANT VECTOR IS:


\left|\vec{R}\right|=√((0.46)^2+(5.8)^2) \\ \\ \boxed{\left|\vec{R}\right|=5.83m/s}

3. Magnitude 3 m/s, direction angle 70°, magnitude 3 m/s, direction angle 135°.

Matches to 3.32 m/s

Magnitude 4.5 m/s, direction angle 55°:

This is vector
\vec{E}, so the magnitude is:


\left|\vec{E}\right|=3m/s

Direction:


\theta = 70{\circ}

Components:


Ex=\left|\vec{E}\right| cos\theta \\ \\ Ex=3 cos70^(\circ)=1.02m/s \\ \\ \\ Ey=\left|\vec{E}\right| sin\theta \\ \\ Ey=3 sin70^(\circ)=2.82m/s

So:


\vec{E}=1.02i+2.82j

For the second vector:

Magnitude 5 m/s, direction angle 210°:


\vec{F}:


\left|\vec{F}\right|=5m/s

Direction:


\theta = 210^(\circ)

Components:


Fx=5 cos210^(\circ)=-(5√(3))/(2) \\ \\ \\ Ey=5 sin210^(\circ)=-(5)/(2)

Then:


\vec{F}=-(5√(3))/(2) i-(5)/(2)j

THE SUM OF THESE TWO VECTORS IS:


\vec{R}=(1.02i+2.82j)+(-(5√(3))/(2)i-(5)/(2)j) \\ \\ \boxed{\vec{R}=-3.31i+0.32j}

THE MAGNITUDE OF THE RESULTANT VECTOR IS:


\left|\vec{R}\right|=√((-3.31)^2+(0.32)^2) \\ \\ \boxed{\left|\vec{R}\right|=3.32m/s}

4. Magnitude 6 m/s, direction angle 120°, magnitude 2 m/s, direction angle 140°.

Matches to 5.29 m/s

Magnitude 6 m/s, direction angle 120°:


\left|\vec{W}\right|=6m/s

Direction:


\theta = 120^(\circ)

Components:


Wx=6 cos120^(\circ)=-3m/s \\ \\ \\ Wy=6 sin120^(\circ)=3√(3)m/s

So:


\vec{W}=-3i+3√(3)j

For the second vector:

Magnitude 2 m/s, direction angle 240°:


\vec{Z}:


\left|\vec{Z}\right|=2m/s

Direction:


\theta = 240^(\circ)

Components:


Zx=2 cos240^(\circ)=-1 \\ \\ \\ Zy=2 sin240^(\circ)=-√(3)

Then:


\vec{Z}=-i-√(3)j

THE SUM OF THESE TWO VECTORS IS:


\vec{R}=(-3i+3√(3)j)+(-i-√(3)j) \\ \\ \boxed{\vec{R}=-4i+2√(3)j}

THE MAGNITUDE OF THE RESULTANT VECTOR IS:


\left|\vec{R}\right|=\sqrt{(-4)^2+(2√(3))^2} \\ \\ \boxed{\left|\vec{R}\right|=5.29m/s}

User Martin Nowak
by
6.4k points