33.2k views
5 votes
The sum of two numbers is 12, their product is 96. Compute these two numbers. Explain.​

1 Answer

7 votes

Answer:

The numbers are


6+2√(15)i and
6-2√(15)i

Explanation:

Let

x and y -----> the numbers

we know that


x+y=12 ----->
y=12-x ------> equation A


xy=96 ----> equation B

substitute equation A in equation B and solve for x


x(12-x)=96\\12x-x^(2)=96\\x^(2) -12x+96=0

Solve the quadratic equation

The formula to solve a quadratic equation of the form
ax^(2) +bx+c=0 is equal to


x=\frac{-b(+/-)\sqrt{b^(2)-4ac}} {2a}

in this problem we have


x^(2) -12x+96=0

so


a=1\\b=-12\\c=96

substitute


x=\frac{-(-12)(+/-)\sqrt{-12^(2)-4(1)(96)}} {2(1)}


x=\frac{12(+/-)√(-240)} {2}

Remember that


i^(2)=√(-1)


x=\frac{12(+/-)√(240)i} {2}


x=\frac{12(+/-)4√(15)i} {2}

Simplify


x=6(+/-)2√(15)i


x1=6+2√(15)i


x2=6-2√(15)i

we have two solutions

Find the value of y for the first solution

For
x1=6+2√(15)i


y=12-x

substitute


y1=12-(6+2√(15)i)


y1=6-2√(15)i

Find the value of y for the second solution

For
x2=6-2√(15)i


y2=12-x

substitute


y2=12-(6-2√(15)i)


y2=6+2√(15)i

therefore

The numbers are


6+2√(15)i and
6-2√(15)i

User Mibou
by
6.8k points