Answer:
![Q_1=2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/w5lpdk266epavj15ss41x5ksra05c9vjnb.png)
![Q_3=6](https://img.qammunity.org/2020/formulas/mathematics/middle-school/shqsw4he6h7fbf86ei1u02pnzdky393vgf.png)
Explanation:
Notice that we already have the data sorted from least to greatest.
Now to find Q1 and Q3 we can use the following formulas
For a set of data ordered from least to greatest of the form
![X_1, X_2, ..., X_n](https://img.qammunity.org/2020/formulas/mathematics/middle-school/d0idao31cd0rowsbbut6gdl1t2ptxy56a1.png)
Where n is the total number of data
![Q_1=X_{(1)/(4)(n+1)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/16exkzci0s93w2uygebzfxjknynisrvhlk.png)
In this case
![n=10](https://img.qammunity.org/2020/formulas/mathematics/middle-school/sl7joa7crdh4lt3hxzqrvo2lsvkqs186ea.png)
So:
![Q_1=X_{(1)/(4)(10+1)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/z88ikoqnzeqfy92i5w26ofpneasgy3x3vt.png)
![Q_1=X_(2.75)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/h9t5e0nc09w9p67wg3srp6wmyzgfak7jft.png)
Round the nearest whole and get:
![Q_1=X_(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2fiogra59733y5k7cmu2gni8f382ee1i0n.png)
![Q_1=3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/mwzm8vq40cu9hyfy8ug2y1or3bx0bxr7x6.png)
For Q3 we have:
![Q_3=X_{(3)/(4)(n+1)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/efc835rp9rvb3nuubtpw51n0y0hm5bpkw6.png)
![Q_3=X_{(3)/(4)(10+1)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5zcnj9laabxxytshsh7q24h2u2h0zd74y3.png)
![Q_3=X_(8.25)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/i7tpe9whjysbmy92dkq4cfqjb37xp4p9mi.png)
Round the nearest whole and get:
![Q_3=X_(8)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5h7i437h2lp494l82796nye0htbkhetr5m.png)
![Q_3=6](https://img.qammunity.org/2020/formulas/mathematics/middle-school/shqsw4he6h7fbf86ei1u02pnzdky393vgf.png)