70.5k views
5 votes
Which function describes this graph?


10
А. y = (х – 4 )(х - 4)
В. у = х2 - 2x +6
оооо
ос. у = х2 + 8х +12
D. у = (х-2)(х – 6).

Which function describes this graph? — 10 А. y = (х – 4 )(х - 4) В. у = х2 - 2x +6 оооо-example-1
User Hinrik
by
7.5k points

1 Answer

4 votes

Answer:

C. y = x2 + 8x + 12

Explanation:

To find x intercept/zero, substitute y = 0

0 = x^2 + 8x + 12

x^2 += 8x + 12 = 0

x^2 + 8x + 12 = 0

Solve the quadratic equation

  • ax^2 + bx + c = 0 using x = -b±
    \sqrt{b^2 -4ac / 2a
  • x = -8±
    \sqrt{8^2 -4(1)(12) / 2(1)

x = -8±
\sqrt{8^2 -4(12) / 2(1)

any expression multiplied by 1 remains the same

x= -8±
\sqrt{8^2 - 4(12) / 2(1)

Evaluate the power

8^2

write the exponentiation as a multiplication

8(8)

multiply the numbers

64

x = -8±
\sqrt{64 - 4(12) / 2(1)

multiply the numbers

x = -8±
\sqrt{64 - 48 / 2(1)

any expression multiplied by q remains the same

x = -8±
\sqrt{64-48 /2

subtract the numbers

x = -8±
\sqrt{16 / 2

calculate the square root

x= -8± 4 / 2

x= -8 + 4 / 2

x= -8 - 4 / 2

simplify the expression

x = -2

x = -8 - 4 / 2

x = -2

x = -6

final solutions are

x1 = -6, x 2 = -2

User Nii Laryea
by
8.1k points