Answer:
5
is the answer.
Explanation:
y= 4x-1
taking derivative with respect to x ,we get
![(dy)/(dx) = 4\\\\formula \int\limits^a_b {\sqrt{1+((dy)/(dx))^2 } } \, dx \\here a = 2 and b =-3 \\ \int\limits^2_(-3)_ {\sqrt{1+({4})^2 } } \, dx \\ = √(17) (2-(-3))=5√(17)](https://img.qammunity.org/2020/formulas/mathematics/college/u0j18nilenbd5xi4x4pvwq2jordqzybrv8.png)
Using distance formula
we have points
at x =-3 the value of y = 4(-3)-1= -12-1 = -13
at x =2 the value of y = 4(2)-1 =7
points are ( -3,-13) and (2,7)
distance formula =
![√((x_2-x_1)^2+(y_2-y_1)^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/x34b1cgcyotgb701r3frhljpg0xdibcf6b.png)
=
![√((2-(-3)^2+(7-(-13)^2)](https://img.qammunity.org/2020/formulas/mathematics/college/pxzbxvs604dgo6wsh3am3hdpmhe7csncqo.png)
=
![√((5)^2+(20)^2)](https://img.qammunity.org/2020/formulas/mathematics/college/isd5ymf9bz219w38r0zazhoav8xw840sf9.png)
=
![√(425)](https://img.qammunity.org/2020/formulas/mathematics/college/ojd5raoaj3jnmd00cqfctv3e65n4i283b7.png)
=5
![√(17)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/40do5mfc63vkkcpf0bosoncyas0gncdo96.png)