Answer: The mean number of checks written per day =
![\lambda=0.3507](https://img.qammunity.org/2020/formulas/mathematics/college/wd201piwi1n2krhkc203td5efszr6jxlkw.png)
![\text{Variance}(\sigma^2)=\lambda=0.3507](https://img.qammunity.org/2020/formulas/mathematics/college/aer8tn8migycmspqgyoywlgh3mykd3b56r.png)
![\text{Standard deviation}=0.5922](https://img.qammunity.org/2020/formulas/mathematics/college/h71usi8yb8jzj8akc3lqtpt00pfzy9rwby.png)
Explanation:
Given : A person wrote 128 checks in last year.
Consider , the last year is a no-leap year.
The number of days in ;last year = 365 days
Let X be the number of checks in one day.
Then ,
![X=(128)/(365)=0.350684931507\approx0.3507](https://img.qammunity.org/2020/formulas/mathematics/college/6l2kfr4kqlheu9j72ytuncz44lefma3oho.png)
The mean number of checks written per day =
![\lambda=0.3507](https://img.qammunity.org/2020/formulas/mathematics/college/wd201piwi1n2krhkc203td5efszr6jxlkw.png)
Now X follows Poisson distribution with parameter
.
Then ,
![\text{Variance}(\sigma^2)=\lambda=0.3507](https://img.qammunity.org/2020/formulas/mathematics/college/aer8tn8migycmspqgyoywlgh3mykd3b56r.png)
![\Rightarrow\sigma=√(\lambda)=√(0.3507)=0.59219929078\approx0.5922](https://img.qammunity.org/2020/formulas/mathematics/college/264x0q3vs9ftv529h9ziwoeekqgltxgrsm.png)