Answer:
Let x represents the person's age and y represents the peak heart rate of the person,
Thus, the table that shows the given situation would be,
x 16 26 32 37 42 53 48 21
y 220 194 193 178 172 160 174 214,
By the above table,
![\sum x=275](https://img.qammunity.org/2020/formulas/health/college/pkicuc5h5wpkuq4b65avay8636vcovz887.png)
![\sum y=548](https://img.qammunity.org/2020/formulas/health/college/5el9gmvpmz253qto5jv9qwtqzbqhh4vjig.png)
![\sum x^2=10643](https://img.qammunity.org/2020/formulas/health/college/5l8ta1lh3mqljtpekp9dzqed3r3yccs1lc.png)
![\sum xy=49876](https://img.qammunity.org/2020/formulas/health/college/qe2hi2pketdy5u9x0rb9l8yaw6h09u36bw.png)
![\sum y^2=286225](https://img.qammunity.org/2020/formulas/health/college/i8vk7iosikeom70bbwlc53jqdya9hfxxpu.png)
So, the correlation coefficient is,
![r=(n\sum xy-\sum x\sum y)/(√((n\sum x^2-(\sum x)^2)(n\sum y^2-(\sum y)^2)))](https://img.qammunity.org/2020/formulas/health/college/sr78jod4q3ikek3u1boauea8dsweiaekxb.png)
By substituting the values,
r ≈ 0.9681
Hence, there is a linear relation between x and y,
Now, let the linear equation that shows the given table,
y = b + ax
Where,
![a=((\sum y)(\sum x^2)-(\sum x)(\sum xy))/(n\sum x^2-(\sum x)^2)](https://img.qammunity.org/2020/formulas/health/college/vs08k1cjjwq2gq2ead1fnozh61qv21gsul.png)
![b=(\sum xy-(\sum x)(\sum xy))/(n\sum x^2-(\sum x)^2)](https://img.qammunity.org/2020/formulas/health/college/erysj4er5j3sgv13js77rr716rtd0l49xd.png)
By substituting the value,
We get,
a = 241.8,
b = -1.562,
Hence, the linear equation that shows the given situation,
y = -1.562x + 241.8
Since, different values of y is obtained by substituting different values of x in the equation,
Therefore, heart rate depend on the age.