Answer:3480s⁻¹
Step-by-step explanation:We can solve the following problem using the Arrhenius equation.
Arrhenius equation is given by:
![K=Aexp[-Ea/RT]](https://img.qammunity.org/2020/formulas/chemistry/college/70ku72nwh1z8w2tcbcbl7oubscausam8ne.png)
A=Pre-exponential factor or frequency factor
Ea=Activation energy
R=Ideal gas constant
T=Temperature
K=Rate constant
From the Arrhenius equation we can see that the rate constant K is related with the activation energy and frequency factor.
In the question we are given with the following data:
Ea=42KJ/mol=42x 1000 J/mol
A=8.0×10¹ per second
T=298K
R=8.314J/K mol
when we substitute these given values in Arrhenius equation
![K=A{exp[-Ea / RT]}\\K=8\ *10^(10) s^(-1){exp[-42000/ 8.314*298]}\\K=8\ *10^(10) s^(-1){exp[-16.95]}\\K=4.35*10^{^(-8)}*8.0*10^{^(10)}s^(-1)\\K=34.8*10^(2)s^(-1)\\](https://img.qammunity.org/2020/formulas/chemistry/college/zg94g7x1duc64p5wh88gvqg3qxj2fgmzph.png)
K=3480s⁻¹
The value of rate constant obtained is 3480s⁻¹.