Answer:
The correct option is d.
Explanation:
The approximate population P, in thousands, for a species of frogs in a particular rain forest, x years after 1999 is given by the formula
![P=0.672x^2-0.046x+3](https://img.qammunity.org/2020/formulas/mathematics/college/6qp2bys1799tpluv4ckrh8ory73dh3lb8f.png)
We need to find the year it which the population reach 182 frogs.
Substitute P=182 in the given formula.
![182=0.672x^2-0.046x+3](https://img.qammunity.org/2020/formulas/mathematics/college/a3r0ffxzv11leuwkmzjax550iqpncroksj.png)
Subtract 182 from both the sides.
![0=0.672x^2-0.046x+3-182](https://img.qammunity.org/2020/formulas/mathematics/college/3cxsgk701ppheq8evoqp2idtsjx8zynj2r.png)
![0=0.672x^2-0.046x-179](https://img.qammunity.org/2020/formulas/mathematics/college/demwuvt0ijn44ztqe412hn6n2dfvmfz0vm.png)
Multiply both sides by 1000 to remove decimals.
![0=672x^2-46x-179000](https://img.qammunity.org/2020/formulas/mathematics/college/jsc1m94clde2a3axlvf2aj2n62nywsjwuz.png)
Quadratic formula:
![x=(-b\pm √(b^2-4ac))/(2a)](https://img.qammunity.org/2020/formulas/mathematics/high-school/ab45cdhbeliwcal3naam0rctuj1s2ka8cv.png)
Substitute a=672, b=-46 and c=-179000 in the quadratic formula.
![x=(-\left(-46\right)\pm√(\left(-46\right)^2-4\cdot \:672\left(-179000\right)))/(2\cdot \:672)](https://img.qammunity.org/2020/formulas/mathematics/college/usba23yiuyay9e21uifvm73i3pwst7rwfw.png)
On simplification we get
![x=(-\left(-46\right)+√(\left(-46\right)^2-4\cdot \:672\left(-179000\right)))/(2\cdot \:672)\approx 16.355](https://img.qammunity.org/2020/formulas/mathematics/college/5yw7o71p7thzoe2azf6vqmi2wnlgfiac2g.png)
![x=(-\left(-46\right)-√(\left(-46\right)^2-4\cdot \:672\left(-179000\right)))/(2\cdot \:672)\approx -16.287](https://img.qammunity.org/2020/formulas/mathematics/college/brtvw7viuj8yl8raj91ke7p4yopxeoxxns.png)
The value of x can not be negative because x is number of years after 1999.
x=16.35 in means is 17th year after 1999 the population reach 182 frogs.
![1999+17=2016](https://img.qammunity.org/2020/formulas/mathematics/college/sknxt4vy1osemqg86p16f1fclas3670qbi.png)
The population reach 182 frogs in 2016. Therefore the correct option is d.