54.6k views
0 votes
Prove that 7 divides 2^n+1 + 3^2n-1 whenever n is a positive integer. on Promotion

1 Answer

3 votes

Answer:

Explanation:

To prove 7 divides
2^(n+1) +3^(2n-1)

let
P\left [ n\right ]=2^(n+1) +3^(2n-1)

for n>1

For n=1
2^(1+1) +3^(2-1)=7 \left ( divisible by 7\right )

to show that
P\left ( n+1\right )=P\left ( n\right )


2^(n+1) +3^(2n-1)=7x for some interger x

this equation will also be valid for
P\left [ n+1\right ]=2^(\left ( n+1\right )+1)+3^(2\left ( n+1\right )-1)


P\left [ n+1\right ]=2^(\left ( n+1\right )+1)+3^(2n+1)

rearranging


P\left [ n+1\right ]=2\dot 2^(n+1) +3^2\dot 3^(2n-1)


P\left [ n+1\right ]=2\dot 2^(n+1) +9\dot 3^(2n-1)


P\left [ n+1\right ]=2\dot 2^(n+1) +\left ( 7+2\right )\dot 3^(2n-1)


P\left [ n+1\right ]=2\dot 2^(n+1) +\left ( 7\right )\dot 3^(2n-1)+\left ( 2\right )\dot 3^(2n-1)


P\left [ n+1\right ]=2\dot \left ( 2^(n+1) +3^(2n-1)\right )+\left ( 7\right )\dot 3^(2n-1)


P\left [ n+1\right ]=2\dot P\left ( k\right )+\left ( 7\right )\dot 3^(2n-1)

using induction hyposthesis


2^(n+1) +3^(2n-1)=7x

thus


P\left [ n+1\right ]=2\dot 7x +\left ( 7\right )\dot 3^(2n-1)


P\left [ n+1\right ]=7\left ( 2x+3^(2n-1)\right )

hence 7 divides
2^(n+1) +3^(2n-1)

User VeroLom
by
8.4k points