230k views
1 vote
Find a particular solution to y" - y' + 9y = 3 sin 3x

User Ejuhjav
by
5.0k points

1 Answer

3 votes

Answer:

cos3x

Explanation:

y" - y' + 9y = 3 sin 3x


D^(2)y-Dy+9y=3 sin3x


y=(3 sin 3x)/((D^(2) -D+9)=3 sin 3x

here
D^2 will be replaced by
\alpha^2 where
\alpha is coefficient of x


y=(3 sin 3x)/(-3^(2) -D+9)


y=-3(sin 3x)/(D)


y=-3\int\ {sin 3x} \, dx


y=-3(cos3x)/(-3)

y=cos3x

hence Particular solution is cos3x

User Assane
by
5.0k points