Answer with explanation:
The statement is given by:
∀ x ,
![x^4>x](https://img.qammunity.org/2020/formulas/mathematics/college/78ncmu5lsxusk2nff7vppahmkpmly7ezo3.png)
This statement is false
Since, if we consider,
![x=(1)/(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/fi64ns3e7ce6w2oz2iy9865p9lax86nh4q.png)
then we have:
![x^4=((1)/(2))^4\\\\i.e.\\\\x^4=(1)/(2^4)\\\\i.e.\\\\x^4=(1)/(16)](https://img.qammunity.org/2020/formulas/mathematics/college/2ryxlo0fjxn965e3znp86842fenzaclhkf.png)
Also, we know that:
![(1)/(16)<(1)/(2)](https://img.qammunity.org/2020/formulas/mathematics/college/v9kcn0pxy0b1ecmjx8i795i8srxvw94byx.png)
( Since, two number with same numerator; the number with greater denominator is smaller than the number with the smaller denominator )
Hence, we get:
![x^4<x](https://img.qammunity.org/2020/formulas/mathematics/college/gv8gn6selleg5o0wn96zgohdiauetzpnze.png)
when
![x=(1)/(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/fi64ns3e7ce6w2oz2iy9865p9lax86nh4q.png)
Hence, the result :
is not true for all x belonging to real numbers.
Hence, the given statement is a FALSE statement.