Answer:
428.5 gmp
Step-by-step explanation:
Given that,
A piping system is operating at quantity = 400 gpm
Pressure = 28 psi
Increased pressure = 30 psi
We need to calculate the resultant flow rate
We know that,
The flow rate is directly proportional to pressure
![Q\propto P](https://img.qammunity.org/2020/formulas/physics/college/j687rex8yu36nman4pamxrt9ddddra8at1.png)
Therefore,
![(Q_1)/(Q_2)=(P_1)/(P_2)](https://img.qammunity.org/2020/formulas/physics/college/a21bosswjnum2s91rk93v4k94lq9oh5gkh.png)
where,
![Q_1\rightarrow 400\text{ gpm}](https://img.qammunity.org/2020/formulas/physics/college/xja44ktqlc2z64lp2xcbdsk4ez1m6ywlbc.png)
![Q_2\rightarrow x\text{ gpm}](https://img.qammunity.org/2020/formulas/physics/college/ugal0196cdqfij31356nrnuzockherfcif.png)
![P_1\rightarrow 28\text{ psi}](https://img.qammunity.org/2020/formulas/physics/college/3ryu52hmuxgvs9yrk8gsddtvufep00ehpq.png)
![P_2\rightarrow 30\text{ psi}](https://img.qammunity.org/2020/formulas/physics/college/rjwsj27xpu7qwlsx6xc111dnkgf2ncp8e5.png)
By substituting into formula
![(400)/(x)=(28)/(30)](https://img.qammunity.org/2020/formulas/physics/college/8t5f0bswyrs2b63caeb6ggre7vfnzq8iza.png)
![x=(12000)/(28)\approx 428.5\text{ gpm}](https://img.qammunity.org/2020/formulas/physics/college/c8ndgufvjlzab2wtd00k80f4x9wwcf73te.png)
Hence, The resultant flow rate will be 428.5 gmp