Answer:
The probability is 0.2356.
Explanation:
Let X is the event of using the smartphone in meetings or classes,
Given,
The probability of using the smartphone in meetings or classes, p = 51 % = 0.51,
So, the probability of not using smartphone in meetings or classes, q = 1 - p = 1 - 0.51 = 0.49,
Thus, the probability that fewer than 5 of them use their smartphones in meetings or classes.
P(X<5) = P(X=0) + P(X=1) + P(X=2) + P(X=3)+P(X=4)
Since, binomial distribution formula is,

Where,

Here, n = 11,
Hence, the probability that fewer than 5 of them use their smartphones in meetings or classes



