![f(s)\Longrightarrow L^(-1)=\{(-4s-9)/(s^2+25-8)\}](https://img.qammunity.org/2020/formulas/mathematics/college/vap4gtgukyfpg4uenu0e9byn6tillgvvm4.png)
First dismantle,
![L^(-1)=\{-(4s)/(s^2+25-8)-(9)/(s^2+25-8)\}](https://img.qammunity.org/2020/formulas/mathematics/college/uke4dj8cfwkpryauygozv2ka5lbo1fwfqt.png)
Now use the linearity property of Inverse Laplace Transform which states,
For functions
and constants
rule applies,
![L^(-1)=\{a\cdot f(s)+b\cdot g(s)\}=aL^(-1)\{f(s)\}+bL^(-1)\{f(s)\}](https://img.qammunity.org/2020/formulas/mathematics/college/tvdd3ve7t7fgy7hoaf4ef1vh0ome691mho.png)
Hence,
![-4L^(-1)\{(s)/(s^2+25-8)\}-9L^(-1)\{(1)/(s^2+25-8)\}](https://img.qammunity.org/2020/formulas/mathematics/college/7dnbvp4r4uveyvvuz8cg7vyz693w4ezv23.png)
The first part simplifies to,
![</p><p>L^(-1)\{(s)/(s^2+25-8)\} \\</p><p>(d)/(dt)((1)/(√(17))\sin(t√(17))) \\</p><p>\cos(t√(17))</p><p>](https://img.qammunity.org/2020/formulas/mathematics/college/qf3675f9mbckmg795sgj9hmbpxkwegclfq.png)
The second part simplifies to,
![</p><p>L^(-1)\{(1)/(s^2+25-8)\} \\</p><p>(1)/(√(17))\sin(t√(17))</p><p>](https://img.qammunity.org/2020/formulas/mathematics/college/rk2vni8oot9sjjgduxize7amg9mwufhvv8.png)
And we result with,
![\boxed{-4\cos(t√(17))-(9)/(√(17))\sin(t√(17))}](https://img.qammunity.org/2020/formulas/mathematics/college/xhqgpxiabq8imqfjj8j0b3a2h5iebt0bof.png)
Hope this helps.
If you have any additional questions please ask. I made process of solving as quick as possible therefore you might be left over with some uncertainty.
Hope this helps.
r3t40