A second order linear, non - homogeneous ODE has a form of
![ay''+by'+cy=g(x)](https://img.qammunity.org/2020/formulas/mathematics/college/mexsu85wosj8krmmz9qqnha3z8en1c0st7.png)
The general solution to,
![a(x)y''+b(x)y'+c(x)y=0](https://img.qammunity.org/2020/formulas/mathematics/college/3154nizgsxde395djlsszy6avka5rwv152.png)
Can be written as,
![y=y_h+y_p](https://img.qammunity.org/2020/formulas/mathematics/college/vflaqse7lk8vuxlf9cekjtx9y2ec4tm0su.png)
Where
is a solution to the homogeneous ODE and
the particular solution, function that satisfies the non - homogeneous equation.
We can solve
by rewriting the equation,
![ay''+by'+cy=0\Longrightarrow(e^(xy))''+4e^(xy)=0](https://img.qammunity.org/2020/formulas/mathematics/college/oo118ai9172nvrewizyni60hir4huueh31.png)
Which simplifies to,
![e^(xy)(y^2+4)=0](https://img.qammunity.org/2020/formulas/mathematics/college/imez725bqqzssjbh9gsf4flt3kln94o0v4.png)
From here we get two solutions,
![y_(h1)=2i, y_(h2)=-2i](https://img.qammunity.org/2020/formulas/mathematics/college/hturd23fqjfglonq1t0zdys3zwa4dzgx7n.png)
So the form here refines,
![y_h=c_1\cos(2x)+c_2\sin(2x)](https://img.qammunity.org/2020/formulas/mathematics/college/nln8ji488kqs3esprn2j1xn55fkj8zgx1r.png)
The same thing we do with
to get form of,
![y_p=-2x\cos(2x)](https://img.qammunity.org/2020/formulas/mathematics/college/l1mwehv2v251s97kkbhakayaxgl6u2uqyw.png)
From here the final form emerges,
![y=\boxed{c_1\cos(2x)+c_2\sin(2x)-2x\cos(2x)}](https://img.qammunity.org/2020/formulas/mathematics/college/v26oi2c0jhd5hn4l2zp7uqzt6a2pvvx4wc.png)
Hope this helps.
r3t40