203k views
5 votes
PLEASE HELP MEOWT!!!
Rewrite sin^(4)xtan^(2)x in terms of the first power of cosine.

User Kaka
by
4.8k points

2 Answers

4 votes

Explanation:


{ \sin(x) }^(4) { \tan(x) }^(2)


{ \sin(x) }^(4) \frac{ { \sin(x) }^(2) }{ { \cos(x) }^(2) }


\frac{ ({ {1 - \cos(x) }^(2) })^(3) }{ { \cos(x) }^(2) }

hopefully this helps, I'm rusty with my trig identities

User Borchero
by
5.7k points
5 votes

Answer:

sin⁴(x)tan²(x) = (10 -15cos(2x) +6cos(4x) -cos(6x))/(16(1 +cos(2x))

Explanation:

The relevant identities are ...


\sin^4{x}=(3-4cos((2x))+cos((4x)))/(8)\\\\\tan^2{x}=(1-cos((2x)))/(1+cos((2x)))\\\\cos((a))cos((b))=(cos((a+b))+cos((a-b)))/(2)

Then your product is ...


\sin^4{(x)}\tan^2{(x)}=(3-4cos((2x))+cos((4x)))/(8)\cdot(1-cos((2x)))/(1+cos((2x)))\\\\=\frac{3-4cos((2x))+cos((4x))-3cos((2x))+4\cos^2{(2x)}-cos((4x))cos((2x))}{8(1+cos((2x)))}

Collecting terms and using the identity for the product of cosines, we get ...


=(3-7cos((2x))+cos((4x))+4(1+cos((4x)))/(2)-(cos((6x))+cos((2x)))/(2))/(8(1+cos((2x))))\\\\=(10-15cos((2x))+6cos((4x))-cos((6x)))/(16(1+cos((2x))))

User VerizonW
by
6.0k points