Answer: 0.0775
Explanation:
Given : Mean :
![\mu = 25](https://img.qammunity.org/2020/formulas/mathematics/college/iyew4qvtwni596a5ekideqknl4bv2hy9th.png)
Standard deviation :
![\sigma =15](https://img.qammunity.org/2020/formulas/mathematics/college/sgyrtdb1tk1vxsirge960770xco3nlbbpy.png)
Sample size :
![n=36](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7j9ogqao8yblp9fcmqpvo8yy3ojesgyn4s.png)
Since its normal distribution , then the formula to calculate the z-score is given by :-
![z=(x-\mu)/((\sigma)/(√(n)))](https://img.qammunity.org/2020/formulas/mathematics/college/kv4zbzwta1cei225xptycu57ns4dmxgoss.png)
For x= 28.2 hours
![z=(28.2-25)/((15)/(√(36)))=1.28](https://img.qammunity.org/2020/formulas/mathematics/college/vsbr73l6fubg8pmcxq6p65cdywbmaw22lr.png)
For x= 30 hours
![z=(30-25)/((15)/(√(36)))=2](https://img.qammunity.org/2020/formulas/mathematics/college/e1dkich7ohooqlpb68cy1etscmmwskv4qw.png)
The P- value =
![P(1.28<z<2)](https://img.qammunity.org/2020/formulas/mathematics/college/anwmqfc026ke7qf34ks676aom0dobmu9es.png)
![=P(z<2)-P(z<1.28)= 0.9772498-0.8997274=0.0775224\approx0.0775](https://img.qammunity.org/2020/formulas/mathematics/college/fa3zt6kanaedakbbxr9o2dovnl1q00irfu.png)
Hence, the probabiliy that the average time spent stydying for the sampe was between 28.2 and 30 hours = 0.0775