Answer:
The weekly total revenue function is
.
Explanation:
Let the estimated quantities demanded each week of its roll top desks in
the finished and unfinished versions are x and y units respectively.
The unit price of finished furniture is
![p=200-15x-110y](https://img.qammunity.org/2020/formulas/mathematics/college/ncmxvw5v89r5dfap0e0rybyolpwpaa5a8s.png)
The unit price of unfinished furniture is
![q=160-110x-14y](https://img.qammunity.org/2020/formulas/mathematics/college/twk5nttr530ansddqn8dwj3vkmvntwkd0d.png)
Total weekly revenue function is
![R(x,y)=px+qy](https://img.qammunity.org/2020/formulas/mathematics/college/8rjwmputifpk3w1cp3tqsdgz1xwzhcvnxl.png)
![R(x,y)=(200-15x-110y)x+(160-110x-14y)y](https://img.qammunity.org/2020/formulas/mathematics/college/hmd3t0c0omcpb88j1tiehkbn2zu0lojit5.png)
![R(x,y)=200x-15x^2-110xy+160y-110xy-14y^2](https://img.qammunity.org/2020/formulas/mathematics/college/bsdiay3oestdaydwl1ydr21aj6a9ujjzel.png)
Combine like terms.
![R(x,y)=200x-15x^2+(-110xy-110xy)+160y-14y^2](https://img.qammunity.org/2020/formulas/mathematics/college/cz99icenlrcnklx9npnvsalftwdufb29zc.png)
![R(x,y)=200x-15x^2-220xy+160y-14y^2](https://img.qammunity.org/2020/formulas/mathematics/college/k308m1vi3yn1bdxylpqqe33zg36j3syxfs.png)
Therefore the weekly total revenue function is
.