Answer:
The fraction form of given number is
.
Explanation:
The given repeating decimal number is
![0.\overline{342}](https://img.qammunity.org/2020/formulas/mathematics/college/hrnv670yo55sti6hnzxehietxe65bq9ofz.png)
Let
![x=0.\overline{342}](https://img.qammunity.org/2020/formulas/mathematics/college/b6f7dufzeqbpnpfqon59o3uyhltf2pk9pu.png)
It can be written as
![x=0.342342342...](https://img.qammunity.org/2020/formulas/mathematics/college/wrlg5j2nekduxv9417e43owntya8avc26q.png)
The digits repeated after 3 decimal places. So multiply both sides by 1000.
![1000x=0.342342342...* 1000](https://img.qammunity.org/2020/formulas/mathematics/college/mw7a64rx8txrjmd24n7uiaiufiatzwm081.png)
![1000x=342.342342...](https://img.qammunity.org/2020/formulas/mathematics/college/tqf6nhjwlho4kw5aks97pib0mqlj2wyg7n.png)
![1000x=342+0.342342...](https://img.qammunity.org/2020/formulas/mathematics/college/cewu7ldpyh1aw8h5jdt89epvb64kin4u1z.png)
![1000x=342+0.\overline{342}](https://img.qammunity.org/2020/formulas/mathematics/college/ygfp2qvn95rhzhphr4x274jxjmerabbhup.png)
![1000x=342+x](https://img.qammunity.org/2020/formulas/mathematics/college/1ark7lsmzwxooo4amn5zt2at7ob9s25u7m.png)
Subtract x from both the sides.
![1000x-x=342](https://img.qammunity.org/2020/formulas/mathematics/college/xtr9dit33n5lyq1wvovq0806lupcw3hbdp.png)
![999x=342](https://img.qammunity.org/2020/formulas/mathematics/college/qkouf0wjdd197s62r8ic4nal1kyd2956gj.png)
Divide both the sides by 999.
![x=(342)/(999)](https://img.qammunity.org/2020/formulas/mathematics/college/j2zmvjjpkloixhlq652dg1cdlpffooe8vz.png)
![0.\overline{342}=(342)/(999)](https://img.qammunity.org/2020/formulas/mathematics/college/kz53ctfelkl5rkbtgbys5ypwmbrfckmw01.png)
Cancel out the common factors.
![0.\overline{342}=(38)/(111)](https://img.qammunity.org/2020/formulas/mathematics/college/om0d27cqsquza5kahtd3rn3jh97nue23gv.png)
Therefore the fraction form of given number is
.