Answer with explanation:

--------------------------------------------------------Dividing both sides by 8 x
This Integration is of the form ⇒y'+p y=q,which is Linear differential equation.
Integrating Factor
Multiplying both sides by Integrating Factor
![x^{(1)/(8)}* e^{(x^2)/(2)}* [y'+y*(1+4x^2)/(8x)]=(1)/(8)* x^{(1)/(8)}* e^{(x^2)/(2)}\\\\ \text{Integrating both sides}\\\\y* x^{(1)/(8)}* e^{(x^2)/(2)}=(1)/(8)\int {x^{(1)/(8)}* e^{(x^2)/(2)}} \, dx \\\\8y* x^{(1)/(8)}* e^{(x^2)/(2)}=\int {x^{(1)/(8)}* e^{(x^2)/(2)}} \, dx\\\\8y* x^{(1)/(8)}* e^{(x^2)/(2)}=-[x^{(9)/(8)}]*\frac{ \Gamma(0.5625, -x^2)}{(-x^2)^{(9)/(16)}}\\\\8y* x^{(1)/(8)}* e^{(x^2)/(2)}=(-1)^{(-1)/(8)}[ \Gamma(0.5625, -x^2)]+C-----(1)](https://img.qammunity.org/2020/formulas/mathematics/college/nxgja6ikx6vulr1qehbxf9o26qbrt8iwrm.png)
When , x=1, gives , y=9.
Evaluate the value of C and substitute in the equation 1.