Answer:
The magnification is -6.05.
Step-by-step explanation:
Given that,
Focal length = 34 cm
Distance of the image =2.4 m = 240 cm
We need to calculate the distance of the object

Where, u = distance of the object
v = distance of the image
f = focal length
Put the value into the formula



The magnification is



Hence, The magnification is -6.05.