Answer:
The complete factorization is 3x² (x - 5)² ⇒ 2nd answer
Explanation:
* Lets revise how to factorize a trinomial
- Find the greatest common factor of the coefficients of the three terms
∵ The trinomial is 3x^4 - 30x³ + 75x²
- The greatest common factor of 3 , 30 , 75 is 3
∵ 3 ÷ 3 = 1
∵ 30 ÷ 3 = 10
∵ 75 ÷ 3 = 25
∴ 3x^4 - 30x³ + 75x² = 3(x^4 - 10x³ + 25x²)
- Now lets find the greatest common factor of the variable x
∵ x² is the greatest common factor of the three terms
∵ x^4 ÷ x² = x²
∵ 10x³ ÷ x² = 10x
∵ 25x² ÷ x² = 25
∴ 3(x^4 - 10x³ + 25x²) = 3x² (x² - 10x + 25)
- Lets factorize (x² - 10x + 25)
∵ √x² = x
∵ √25 = 5
∵ 2 × 5 × x = 10x
∴ x² - 10x + 25 is a completing square
∴ (x² - 10x + 25) = (x - 5)²
∴ 3x² (x² - 10x + 25) = 3x² (x - 5)²
* The complete factorization is 3x² (x - 5)²