Answer:
Option B
![f(x)=-x^(2)+12x-32](https://img.qammunity.org/2020/formulas/mathematics/middle-school/exh540c9q82196w5dheru8009m80za5vkb.png)
Explanation:
we know that
For the given values, the quadratic function is a vertical parabola open downward (vertex is a maximum)
The equation in vertex form is equal to
![f(x)=a(x-h)^(2) +k](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8r8bj7ztu8d62sggc0y9skdtbdu1snwvad.png)
where
(h,k) is the vertex
a is a coefficient
we have
(h,k)=(6,4)
so
![f(x)=a(x-6)^(2) +4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/w67uwz572qldjgszkygwhbylhzltcepa9e.png)
Find the value of a
For x=8, y=0 -----> the y-intercept
substitute
![0=a(8-6)^(2) +4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/nv4ogssgu0u8snpbdq4vcwaxaar2u5ntc2.png)
![0=a(2)^(2) +4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/mx7oammddtjb2gnk78g6q80kxgcvhfl4wn.png)
![0=4a +4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fcd8094zidurh15z4ygyaogr2tjgtzpt54.png)
![a=-1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/bl05c3tb5rzcyr1ib2yxcdb8na8knqww0p.png)
substitute
![f(x)=-(x-6)^(2) +4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/x3fnlt09dfwfp44ljirq262jv26p4af191.png)
Convert to standard form
![f(x)=-(x^(2)-12x+36) +4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dn2lo5s2f72uy9z99tfrf1mfc1zivauj99.png)
![f(x)=-x^(2)+12x-36+4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dl6lhe6lj45p1slr93wr4x8uid4io2d0ht.png)
![f(x)=-x^(2)+12x-32](https://img.qammunity.org/2020/formulas/mathematics/middle-school/exh540c9q82196w5dheru8009m80za5vkb.png)
The graph in the attached figure