Answer:
63.02 g.
Step-by-step explanation:
- Na reacts with Cl₂ according to the balanced equation:
2Na + Cl₂ → 2NaCl,
It is clear that 2 mole of Na react with 1 mole of Cl₂ to produce 2 moles of NaCl.
- Firstly, we need to calculate the no. of moles of Na and Cl₂:
no. of moles of Na = (mass/atomic mass) = (19.0 g/22.9897 g/mol) = 0.826 g.
no. of moles of Cl₂ = (mass/atomic mass) = (34.0 g/70.906 g/mol) = 0.48 g.
- From the stichiometry, Na reacts with Cl₂ with a molar ratio (2:1).
So, 0.826 mol of Na "the limiting reactant" reacts completely with 0.413 mol of Cl₂ "left over reactant".
The no. of moles of Cl₂ remained after the reaction = 0.48 mol - 0.413 mol = 0.067 mol.
∴ The mass of Cl₂ remained after the reaction = (no. of moles of Cl₂ remained after the reaction)(molar mass of Cl₂) = (0.067 mol)(70.906 g/mol) = 4.75 g.
- To get the no. of grams of produced NaCl:
using cross multiplication:
2 mol of Na produce → 2 mol of NaCl, from the stichiometry.
∴ 0.826 mol of Na produce → 0.826 mol of NaCl.
∴ The mass of NaCl produced after the reaction = (no. of moles of NaCl)(molar mass of NaCl) = (0.826 mol)(58.44 g/mol) = 48.27 g.
∴ The total weight of the glass vial containing the final product = the weight of the glass vial + the weight of the remaining Cl₂ + the weight of the produced NaCl = 10.0 g + 4.75 g + 48.27 g = 63.02 g.