160k views
5 votes
Solve |y + 2| > 6

y < -8 or y > 4
y < -6 or y > 6
y < -4 or y > 4

User Echavez
by
6.4k points

2 Answers

3 votes

Answer:


\large\boxed{\y\ }

Explanation:


|y+2|>6\iff y+2>6\ or\ y+2<-6\qquad\text{subtract 2 from both sides}\\\\y+2-2>6-2\ or\ y+2-2<-6-2\\\\y>4\ or\ y<-8\Rightarrow\y\

User Stadub Dima
by
5.7k points
7 votes

ANSWER

y

EXPLANATION

The given absolute value equation is


|y + 2| \: > \: 6

This implies that:


(y + 2) \: > \: 6 \: or \: - (y + 2) \: > \: 6

Multiply through by -1 in the second inequality and reverse the sign.


y + 2 \: > \: 6 \: or \: y + 2\: < \: - 6


y \: > \: 6 - 2\: or \: y \: < \: - 6 - 2

We simplify to get:


y \: > \: 4\: or \: y \: < \: - 8

The correct answer is A.

User Stephenalexbrowne
by
5.5k points