Answer:
The value of
![f^(-1)(2)=8](https://img.qammunity.org/2020/formulas/mathematics/college/ndllya8quoi9kzl30fhe2kqg9gneeo7php.png)
Explanation:
* Lets revise how to find the inverse function
- At first write the function as y = f(x)
- Then switch x and y
- Then solve for y
- The domain of f(x) will be the range of f^-1(x)
- The range of f(x) will be the domain of f^-1(x)
* Now lets solve the problem
- The inverse of the logarithmic function is an exponential function
∵
![f(x)=log_(4)(x + 8)](https://img.qammunity.org/2020/formulas/mathematics/college/py1o38o7tabvm563tx19tcnh89te571cns.png)
- Write the function as y = f(x)
∴
![y=log_(4)(x+8)](https://img.qammunity.org/2020/formulas/mathematics/college/nx722hzrs1opg9uswa0ktauxh5inlt90z0.png)
- Switch x and y
∴
![x=log_(4)(y+8)](https://img.qammunity.org/2020/formulas/mathematics/college/re8udfdhib80ctf26fhlls9vmhkmrgun06.png)
- Lets solve it to find y
# Remember:
![log_(a)b=n=====a^(n)=b](https://img.qammunity.org/2020/formulas/mathematics/college/y3akupfpigju2novyohj6xfbahsfsx8wmf.png)
- Use this rule to find y
∴
![4^(x)=(y + 8)](https://img.qammunity.org/2020/formulas/mathematics/college/uv5eitjaznx69m1hbdmxhx64f68r0wyx8k.png)
- Subtract 8 from both sides
∴
![4^(x)-8=y](https://img.qammunity.org/2020/formulas/mathematics/college/gmetcanx6da31hwy9u2ai01k7n07c499cr.png)
∴
![f^(-1)(x)=4^(x)-8](https://img.qammunity.org/2020/formulas/mathematics/college/d251wdfwi0rpvew1ynrvemnv7flyszkie2.png)
- Lets substitute x by 2
∴
![f^(-1)(2)=4^(2)-8](https://img.qammunity.org/2020/formulas/mathematics/college/z6im0ao2msq9q1qfcwr59n4139mb6w1m7h.png)
- The value of 4² = 16
∴
![f^(-1)(x)=16-8=8](https://img.qammunity.org/2020/formulas/mathematics/college/k0yupwgzyh6tj7peoxcwa3n6b9ecgoutnt.png)
* The value of
![f^(-1)(2)=8](https://img.qammunity.org/2020/formulas/mathematics/college/ndllya8quoi9kzl30fhe2kqg9gneeo7php.png)