163k views
1 vote
Given the function f(x) = log base 4(x+8) , find the value of f^-1(2)

User Davio
by
5.2k points

1 Answer

3 votes

Answer:

The value of
f^(-1)(2)=8

Explanation:

* Lets revise how to find the inverse function

- At first write the function as y = f(x)

- Then switch x and y

- Then solve for y

- The domain of f(x) will be the range of f^-1(x)

- The range of f(x) will be the domain of f^-1(x)

* Now lets solve the problem

- The inverse of the logarithmic function is an exponential function


f(x)=log_(4)(x + 8)

- Write the function as y = f(x)


y=log_(4)(x+8)

- Switch x and y


x=log_(4)(y+8)

- Lets solve it to find y

# Remember:
log_(a)b=n=====a^(n)=b

- Use this rule to find y


4^(x)=(y + 8)

- Subtract 8 from both sides


4^(x)-8=y


f^(-1)(x)=4^(x)-8

- Lets substitute x by 2


f^(-1)(2)=4^(2)-8

- The value of 4² = 16


f^(-1)(x)=16-8=8

* The value of
f^(-1)(2)=8

User Mark Lakata
by
5.2k points