Step-by-step explanation:
You forgot to include the diagram, but I'm assuming it's the one attached to this answer.
First, sum of the torques equals moment of inertia times angular acceleration.
∑τ = Iα
Fa r - Fb r = (1/2 mr²) α
Fa - Fb = 1/2 m r α
Na μ - Nb μ = 1/2 m r α
μ (Na - Nb) = 1/2 m r α
α = 2μ (Na - Nb) / (m r)
To find the normal forces, we need to take sum of the forces in the x and y directions.
∑Fₓ = maₓ
Nb - Na sin 45 + Fa cos 45 = 0
Nb - Na sin 45 + Na μ cos 45 = 0
Nb - Na (√2 / 2) + Na μ (√2 / 2) = 0
Nb - Na (√2 / 2) (1 + μ) = 0
Nb = Na (√2 / 2) (1 + μ)
∑Fᵧ = maᵧ
Fb - W + Na cos 45 + Fa sin 45 = 0
Nb μ - W + Na cos 45 + Na μ sin 45 = 0
Nb μ - W + Na (√2 / 2) + Na μ (√2 / 2) = 0
Nb μ - W + Na (√2 / 2) (1 + μ) = 0
Substituting:
Nb μ - W + Nb = 0
Nb (μ + 1) = W
Nb = mg / (μ + 1)
Nb = (5 kg) (9.8 m/s²) / (0.2 + 1)
Nb = 40.83 N
Finding Na:
mg / (μ + 1) = Na (√2 / 2) (1 + μ)
Na = mg√2 / (μ + 1)²
Na = (5 kg) (9.8 m/s²) √2 / (0.2 + 1)²
Na = 48.12 N
Therefore:
α = 2μ (Na - Nb) / (m r)
α = 2(0.2) (48.12 - 40.83) / (5 × 0.125)
α = 4.67 rad/s²
Rounding to 1 sig-fig, the angular acceleration is 5 rad/s².