Answer:
(a)
![f'(x)=-(2)/(x^3)](https://img.qammunity.org/2020/formulas/mathematics/college/84tyvufjyl2hkxkg4nhp8jbdbosmgd06q7.png)
(b)
![y=-0.25x+0.75](https://img.qammunity.org/2020/formulas/mathematics/college/j44rr4eaee3wmay8blq1ew0kvmy9z4dcla.png)
Explanation:
The given function is
.... (1)
According to the first principle of the derivative,
![f'(x)=lim_(h\rightarrow 0)(f(x+h)-f(x))/(h)](https://img.qammunity.org/2020/formulas/mathematics/college/cok42bdkpa2ul84xeylevxmx71m4p842y3.png)
![f'(x)=lim_(h\rightarrow 0)((1)/((x+h)^2)-(1)/(x^2))/(h)](https://img.qammunity.org/2020/formulas/mathematics/college/3wpwvf2wamaxovgrwsnedc9sul1yakq2ji.png)
![f'(x)=lim_(h\rightarrow 0)((x^2-(x+h)^2)/(x^2(x+h)^2))/(h)](https://img.qammunity.org/2020/formulas/mathematics/college/iq103mwnp0t7p3n4lzr5xafy7yznime0ps.png)
![f'(x)=lim_(h\rightarrow 0)(x^2-x^2-2xh-h^2)/(hx^2(x+h)^2)](https://img.qammunity.org/2020/formulas/mathematics/college/4je98j04o9dwwk6ziw124en7ijf6rpj8vn.png)
![f'(x)=lim_(h\rightarrow 0)(-2xh-h^2)/(hx^2(x+h)^2)](https://img.qammunity.org/2020/formulas/mathematics/college/ccpnvy8uwgeltpucxamtc614uahn82ex3e.png)
![f'(x)=lim_(h\rightarrow 0)(-h(2x+h))/(hx^2(x+h)^2)](https://img.qammunity.org/2020/formulas/mathematics/college/1x2z0a4cgu5m9zx6ytp2mjc3x32k7pepx6.png)
Cancel out common factors.
![f'(x)=lim_(h\rightarrow 0)(-(2x+h))/(x^2(x+h)^2)](https://img.qammunity.org/2020/formulas/mathematics/college/nunbxi46l0nc2l8qqk9luu76b3491dcp9s.png)
By applying limit, we get
![f'(x)=(-(2x+0))/(x^2(x+0)^2)](https://img.qammunity.org/2020/formulas/mathematics/college/14o7xiq6ey2cklw2seh9y9aydobaaprnx9.png)
![f'(x)=(-2x))/(x^4)](https://img.qammunity.org/2020/formulas/mathematics/college/uz966178h2f57aykqakzbmp9i0z1qttvcr.png)
.... (2)
Therefore
.
(b)
Put x=2, to find the y-coordinate of point of tangency.
![f(x)=(1)/(2^2)=(1)/(4)=0.25](https://img.qammunity.org/2020/formulas/mathematics/college/skc6uhmb6853iu3aggiihg8747e52p61ou.png)
The coordinates of point of tangency are (2,0.25).
The slope of tangent at x=2 is
![m=((dy)/(dx))_(x=2)=f'(x)_(x=2)](https://img.qammunity.org/2020/formulas/mathematics/college/968ys47z95q1qdd59vt9ee4kbk8jsd20uh.png)
Substitute x=2 in equation 2.
![f'(2)=(-2)/((2)^3)=(-2)/(8)=(-1)/(4)=-0.25](https://img.qammunity.org/2020/formulas/mathematics/college/10spy12q6taphz9hzzboooigxddbxx8qjd.png)
The slope of the tangent line at x=2 is -0.25.
The slope of tangent is -0.25 and the tangent passes through the point (2,0.25).
Using point slope form the equation of tangent is
![y-y_1=m(x-x_1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lwv5ftdd36i4idvu50qxfdgwxhdby4wlt5.png)
![y-0.25=-0.25(x-2)](https://img.qammunity.org/2020/formulas/mathematics/college/xfzovnlynrrby09jhnmhqv1yfime57kz2v.png)
![y-0.25=-0.25x+0.5](https://img.qammunity.org/2020/formulas/mathematics/college/yxhx9ywc6h01znyh5c0gha4gt4cb78kjci.png)
![y=-0.25x+0.5+0.25](https://img.qammunity.org/2020/formulas/mathematics/college/uahepcguc4ythy567vmkfuz0h10r7l4qqa.png)
![y=-0.25x+0.75](https://img.qammunity.org/2020/formulas/mathematics/college/j44rr4eaee3wmay8blq1ew0kvmy9z4dcla.png)
Therefore the equation of the tangent line at x=2 is y=-0.25x+0.75.