340,385 views
1 vote
1 vote
Evaluate the integral following ​

Evaluate the integral following ​-example-1
User Exscape
by
2.7k points

1 Answer

18 votes
18 votes

Answer:


\displaystyle{4\tan x + \sin 2x - 6x + C}

Explanation:

We are given the integral of:


\displaystyle{\int 4(\sec x - \cos x)^2 \, dx}

First, we can use a property to separate a constant out of integrand:


\displaystyle{4 \int (\sec x - \cos x)^2 \, dx}

Next, expand the expression (integrand):


\displaystyle{4 \int \sec^2 x - 2\sec x \cos x + \cos^2 x \, dx}

Since
\displaystyle{\sec x = (1)/(\cos x)} then it can be simplified to:


\displaystyle{4 \int (1)/(\cos^2 x) - 2(1)/(\cos x) \cos x + \cos^2 x \, dx}\\\\\displaystyle{4 \int (1)/(\cos^2 x) - 2 + \cos^2 x \, dx}

Recall the formula:


\displaystyle{\int (1)/(\cos ^2 x) \, dx = \int \sec ^2 x \, dx = \tan x + C}\\\\\displaystyle{\int A \, dx = Ax + C \ \ \tt{(A \ and \ C \ are \ constant.)}

For
\displaystyle{\cos ^2 x}, we need to convert to another identity since the integrand does not have a default or specific integration formula. We know that:


\displaystyle{2\cos^2 x -1 = \cos2x}

We can solve for
\displaystyle{\cos ^2x} which is:


\displaystyle{2\cos^2 x = \cos2x+1}\\\\\displaystyle{\cos^2x = (\cos 2x +1)/(2)}

Therefore, we can write new integral as:


\displaystyle{4 \int (1)/(\cos^2 x) - 2 + (\cos2x +1)/(2) \, dx}

Evaluate each integral, applying the integration formula:


\displaystyle{\int (1)/(\cos^2x) \, dx = \boxed{\tan x + C}}\\\\\displaystyle{\int -2 \, dx = \boxed{-2x + C}}\\\\\displaystyle{\int (\cos 2x +1)/(2) \, dx = (1)/(2)\int \cos 2x +1 \, dx}\\\\\displaystyle{= (1)/(2)\left((1)/(2)\sin 2x + x\right) + C}\\\\\displaystyle{= \boxed{(1)/(4)\sin 2x + (1)/(2)x + C}}

Then add all these boxed integrated together then we'll get:


\displaystyle{4\left(\tan x - 2x + (1)/(4)\sin 2x + (1)/(2) x\right) + C}

Expand 4 in the expression:


\displaystyle{4\tan x - 8x +\sin 2x + 2 x + C}\\\\\displaystyle{4\tan x + \sin 2x - 6x + C}

Therefore, the answer is:


\displaystyle{4\tan x + \sin 2x - 6x + C}

User Lykegenes
by
2.1k points