Answer:
![\boxed{2.7 * 10^(3)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ojk5k0pti3yymkrjr4but5wu0lmu1xcl41.png)
Explanation:
![(4 * 10^(9))/(1.5 * 10^(6))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wrrdjnydsbbutx8u3j0clvoxqw34pqh5d2.png)
1. Divide the coefficients and the exponentials separately
![(4 * 10^(9))/(1.5 * 10^(6)) = (4)/(1.5) * (10^(9))/(10^(6))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/eea6d0syffqg80yun12h1padpok3wk8n3k.png)
2. Divide the coefficients
![(4)/(1.5) \approx 2.7](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ysvz3rbjioe3dqhao8qy952k6x5kaarbxn.png)
3. Divide the exponential terms
Subtract the exponent in the denominator from the exponent in the numerator.
![(10^(9))/(10^(6)) = 10^((9 - 6)) = 10 ^(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/vrt2a62b7g5zsj08knhc6dfums2eyhtizx.png)
4. Rejoin the new coefficient and the new exponential
![(4 * 10^(9))/(1.5 * 10^(6)) \approx \boxed{\mathbf{2.7 * 10^(3)}}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9gn2z8l5rd2dwaiv5qzichkhggl2opxqs3.png)