Final answer:
To fill the hemispherical tank with water through a hole in the base, the work required is 418.88 foot-pounds.
Step-by-step explanation:
To calculate the work required to fill the hemispherical tank with water through a hole in the base, we can use the concept of work done against gravity.
The volume of the tank can be calculated using the formula for the volume of a hemisphere, which is (2/3)πr^3. In this case, the radius is given as 2 feet.
The weight of the water can be found by multiplying the volume by the weight-density of water, which is 62.4 pounds per cubic foot.
The work done is then the weight of the water multiplied by the height it is lifted, which is equal to the radius of the hemisphere.
So, the work required to fill the tank with water is (2/3)π(2^3)(62.4)(2) = 418.88 foot-pounds.