Answer:
![\triangle{ZXY}\sim\triangle{QRS}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/u4xrdwg1orkzkb14iwxa3jgh7rojmga9u8.png)
Explanation:
in the given picture , we have two triangles ΔXYZ and ΔRSQ, in which
![\overline{XY}=14=4*3.5=4*\overline{RS}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ow5mtnfhrk7xtfpzr2e4ejb9sxhccnio4c.png)
![\overline{YZ}=16=4*4=4*\overline{SQ}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/c9pvstxvl9oca7u3coqb3gdggqcn1pxct8.png)
![\overline{ZX}=12=4*3=4*\overline{SR}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/j5umyw9rcynsowduyeh5s5cwsbh8q84lbp.png)
i.e.
![(XY)/(RS)=(YZ)/(SQ)=(ZX)/(QR)=(4)/(1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5x36q7ms6wh7ml3c37oj58a2ywyfexkwo3.png)
By SSS-similarity postulate, we get
![\triangle{ZXY}\sim\triangle{QRS}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/u4xrdwg1orkzkb14iwxa3jgh7rojmga9u8.png)
SSS-similarity postulate says that if the lengths of the corresponding sides of two triangles are proportional, then the triangles must be similar