ANSWER
![x = 2 \: \: or \: \: x = 15](https://img.qammunity.org/2020/formulas/mathematics/high-school/ni1cv5hlpve7ot42j6ze9whije156nzr0n.png)
Or
![x = - 2 \: \: or \: \: x = - 15](https://img.qammunity.org/2020/formulas/mathematics/high-school/rc6w05ffemu2igiswtrqlb4f8a5shmeh4a.png)
Step-by-step explanation
The given polynomial is
![f(x) = {x}^(2) + kx + 30](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8055cicc2cgltkhwdgz0tdgqhpdx1cma2a.png)
where a=1,b=k, c=30
Let the zeroes of this polynomial be m and n.
Then the sum of roots is
![m + n = - (b)/(a) = -k](https://img.qammunity.org/2020/formulas/mathematics/high-school/tskv95drjr4dx7ql3hfpf62afm2f7rkxa4.png)
and the product of roots is
![mn = (c)/(a) = 30](https://img.qammunity.org/2020/formulas/mathematics/high-school/dgaxjvtu0z5c3jutqc97nnu9qe2j5j3b23.png)
The square difference of the zeroes is given by the expression.
![( {m - n})^(2) = {(m + n)}^(2) - 4mn](https://img.qammunity.org/2020/formulas/mathematics/high-school/wtg6o1zg1knw2flxapqe5bespwxtput3bd.png)
From the question, this difference is 169.
This implies that:
![( { - k)}^(2) - 4(30) = 169](https://img.qammunity.org/2020/formulas/mathematics/high-school/h9vyvugy6rkptm3l7e662a2vstxeo1l9ds.png)
![{ k}^(2) -120= 169](https://img.qammunity.org/2020/formulas/mathematics/high-school/w6rzr54ok9ywxs4jlwoad7g2t26ny7ad5v.png)
![k^(2) = 289](https://img.qammunity.org/2020/formulas/mathematics/high-school/jbu0wnfy5bcc6luknxk1ijm4hyk2qiiaa4.png)
![k= \pm √(289)](https://img.qammunity.org/2020/formulas/mathematics/high-school/37w7v85qqe0d4w0z30ipybj5npnqwd87c9.png)
![k= \pm17](https://img.qammunity.org/2020/formulas/mathematics/high-school/a5tjd5l5tjck4xravflothf8bfxwn93d7v.png)
We substitute the values of k into the equation and solve for x.
![f(x) = {x}^(2) \pm17x + 30](https://img.qammunity.org/2020/formulas/mathematics/high-school/hwzretls91s223t3ojfm6lh2vh3i75j0dl.png)
![f(x) = (x \pm2)(x \pm 15)](https://img.qammunity.org/2020/formulas/mathematics/high-school/l1mtprbj67u8lfkl7b2z9wwm635laj77mj.png)
The zeroes are given by;
![(x \pm2)(x \pm 15) = 0](https://img.qammunity.org/2020/formulas/mathematics/high-school/rjqzs96zot0qvuiiem2aujmluf6gyl16fk.png)
![x = \pm2 \: \: or \: \: x = \pm 15](https://img.qammunity.org/2020/formulas/mathematics/high-school/k2o2urgmsphnfghssiedejtxt7y4fw3ekc.png)