Answer:
Vertex:
Roots:
or
![x=2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rgwu4x0cp6hdykhfamznd7kqdkp0xgsg9s.png)
Explanation:
The given quadratic equation is:
Let
![f(x)=3x^2-11x+10](https://img.qammunity.org/2020/formulas/mathematics/middle-school/16lwypckwbtk147eaw5wx3utyyz2tyun7q.png)
We obtain the vertex form by completing the square;
![f(x)=3(x^2-(11)/(3)x)+10](https://img.qammunity.org/2020/formulas/mathematics/middle-school/34zhi4hti4255fkzqo9s6jkie95d9ql4vr.png)
Add and subtract the square of half the coefficient of x.
![f(x)=3(x^2-(11)/(3)x+(-(11)/(6))^2+10-3(-(11)/(6))^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kmsjrfsy4kse944dduwsx00ka3xy6xyd46.png)
This simplifies to
![f(x)=3(x-(11)/(6))^2-(1)/(12)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/l5vgw726jj727d4dtk1imnbiez9pto8wh7.png)
Hence the vertex is
![((11)/(6),-(1)/(12))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3k7ijngjujgah7syvshw3du3wveqw70xru.png)
We now solve to obtain:
![3(x-(11)/(6))^2-(1)/(12)=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/si54aoa8u3yqzym8ug0g5xpp3ti3vqbq1e.png)
![3(x-(11)/(6))^2=(1)/(12))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6ljm6jnv06roh4k0cosutengo7kx85wbtd.png)
![(x-(11)/(6))^2=(1)/(36))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dqmxr5h4l7qbj1q76lz3hifvos29k24voq.png)
![(x-(11)/(6))=\pm \sqrt{(1)/(36)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/hmdj11bkqzk6j58fin0331uqho37un1w4t.png)
![x=(11)/(6)\pm (1)/(6)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/94jusyxrgxswl8c17g80v59id4pcp5dlk1.png)
or
![x=2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rgwu4x0cp6hdykhfamznd7kqdkp0xgsg9s.png)