Answer: OPTION B
Explanation:
Multiply both denominators to find the Least Common Denominator:
![LCD=(3y-4)(y^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/27imcs8lj1panem74lt0i9deunjjh69oe8.png)
Now, divide each original denominator by the LCD and multiply the result by each numerator. Then:
![=((6y^2+2y)(y^2)-(9y-7)(3y-4))/((3y-4)(y^2))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wxxuymr4bmrrn46v99aog0d0sbenirfb8l.png)
Applying Distributive property, you get:
![=(6y^4+2y^3-(27y^2-36y-21y+28))/(3y^3-4y^2)\\\\=(6y^4+2y^3-27y^2+36y+21y-28)/(3y^3-4y^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3m9sh2uncpzf1id59qrwfrjqfrt2y2oitp.png)
Add the like terms in the numerator:
![=(6y^4+2y^3-27y^2+57y-28)/(3y^3-4y^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pkqocuv1nrelg1pd7wsbda4h5x6guh01x6.png)