113,556 views
14 votes
14 votes
A vector in the xy plane has components -14.0 units in the x-direction and 30.0 units in the y-direction. What is the magnitude of the vector? What is the angle between the vector and the positive x-axis?

User Question User
by
3.2k points

1 Answer

7 votes
7 votes


\huge\underline{\underline{\boxed{\mathbb {SOLUTION:}}}}

We would calculate the magnitude by applying pythagorean theorem:


\longrightarrow \sf{Magnitude= √((-14)^2 ) + 30^2}


\longrightarrow \sf{Magnitude = 33.12}


\longrightarrow \sf{The \: vector \: is \: (- 14, 30)}

The angle between two vectors is given by the formula:


\sf{\longrightarrow \small \cos \emptyset = ((a1b1 + a2b2))/( √((a1)^2 + (a2)^2√(b1)^2 + (b2)^2) ) }

In two dimensional, the x axis of vector form is:


\small\sf{\longrightarrow (b1, b2) = (1, 0) }


\sf{\longrightarrow \small \cos \: \emptyset = ((14 * 1 + 30 x 0))/(( √((-14)^2 + (30)^2)(√(1)^2 + (0)^2)) ) }


\small\longrightarrow \sf{ (14)/(33.12) }


\small\longrightarrow \sf{\emptyset \: = arcCos (( - 14)/(33.12) )}


\small\longrightarrow \sf{\emptyset= 115^\circ}


\huge\underline{\underline{\boxed{\mathbb {ANSWER:}}}}


\small\bm{The \: angle \: between \: the \: vector \: }


\small\bm{and \: \: the \: \: positive \: \: x \: \: axis \: \: is \: \: \: 115^\circ .}

User TwiceYuan
by
2.6k points