208k views
4 votes
(10.02)

The point (−3, 1) is on the terminal side of angle θ, in standard position. What are the values of sine, cosine, and tangent of θ? Make sure to show all work.

User Cary
by
5.1k points

1 Answer

1 vote

Answer:

Part 1)
sin(\theta)=(√(10))/(10)

Part 2)
cos(\theta)=-3(√(10))/(10)

Part 3)
tan(\theta)=-1/3

Explanation:

we know that

The angle is in the second quadrant so the sine is positive, the cosine is negative and the tangent is negative

step 1

Find the radius r applying the Pythagoras theorem


r^(2)=x^(2) +y^(2)

substitute the given values


r^(2)=(-3)^(2) +(1)^(2)


r^(2)=10


r=√(10)\ units

step 2

Find the value of
sin(\theta)


sin(\theta)=y/r

substitute values


sin(\theta)=1/√(10)

Simplify


sin(\theta)=(√(10))/(10)

step 3

Find the value of
cos(\theta)


cos(\theta)=x/r

substitute values


cos(\theta)=-3/√(10)

Simplify


cos(\theta)=-3(√(10))/(10)

step 4

Find the value of
tan(\theta)


tan(\theta)=y/x

substitute values


tan(\theta)=-1/3

User Heptic
by
4.5k points