193k views
5 votes
Please help me thank you

Please help me thank you-example-1
User Peacedog
by
7.0k points

1 Answer

7 votes

Answer:


\large\boxed{\sin2\theta=(\sqrt3)/(2),\ \cos2\theta=(1)/(2)}

Explanation:

We know:


\sin2\theta=2\sin\theta\cos\theta\\\\\cos2\theta=\cos^2\theta-\sin^2\thet

We have


\sin\theta=(1)/(2)

Use
\sin^2\theta+\cos^2\theta=1


\left((1)/(2)\right)^2+\cos^2\theta=1\\\\(1)/(4)+\cos^2\theta=1\qquad\text{subtract}\ (1)/(4)\ \text{from both sides}\\\\\cos^2\theta=(4)/(4)-(1)/(4)\\\\\cos^2\theta=(3)/(4)\to\cos\theta=\pm\sqrt{(3)/(4)}\to\cos\theta=\pm(\sqrt3)/(\sqrt4)\to\cos\theta=\pm(\sqrt3)/(2)\\\\\theta\in[0^o,\ 90^o],\ \text{therefore all functions have positive values or equal 0.}\\\\\cos\theta=(\sqrt3)/(2)


\sin2\theta=2\left((1)/(2)\right)\left((\sqrt3)/(2)\right)=(\sqrt3)/(2)\\\\\cos2\theta=\left((\sqrt3)/(2)\right)^2-\left((1)/(2)\right)^2=(3)/(4)-(1)/(4)=(3-1)/(4)=(2)/(4)=(1)/(2)

User Muaaz Khalid
by
6.7k points