395,217 views
15 votes
15 votes
Find the derivative f(x)=[(3x^2-2)/(2x+3)]^3

User Gewure
by
3.7k points

1 Answer

12 votes
12 votes


f(x)=\left( \cfrac{3x^2-2}{2x+3} \right)^3\implies \cfrac{df}{dx}=\stackrel{\textit{\LARGE chain~ ~~ rule}}{3\left( \cfrac{3x^2-2}{2x+3} \right)^2\underset{quotient~rule}{\left( \cfrac{6x(2x+3)~~ - ~~(3x^2-2)2}{(2x+3)^2} \right)}} \\\\\\ \cfrac{df}{dx}=3\left( \cfrac{3x^2-2}{2x+3} \right)^2\left( \cfrac{12x^2+18x-6x^2+4}{(2x+3)^2} \right) \\\\\\ \cfrac{df}{dx}=3\left( \cfrac{3x^2-2}{2x+3} \right)^2\left( \cfrac{6x^2+18x+4}{(2x+3)^2} \right)


\cfrac{df}{dx}=3 \cfrac{(3x^2-2)^2}{(2x+3)^2} \left( \cfrac{2(3x^2+9x+2)}{(2x+3)^2} \right)\implies \cfrac{df}{dx}=\cfrac{6(3x^2-2)^2(3x^2+9x+2)}{(2x+3)^4}

now, we could expand the polynomials, but there isn't much simplification, so no much point doing so.

User Raphael Deiana
by
3.0k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.