Answer:
1) 9/cos(θ)
2)4
(cos(198) +isin(198))
3)z= cos(π/3) +isin(π/3)
Explanation:
x=9
i.e. x= 9 +i0
θ= tan^-1 (0/9)
θ= tan^-1 (0)
=0
hence z= r(cosθ +i sinθ)
= 9(cos 0 + isin 0)
= 9
As cos (0) = 1 hence polar form of x=9 is 9/cos(θ) where θ=0
2)
Given
z1=2
( cos(116)+isin(116))
z2=2(cos(82)+isin(82))
As per the product formula od complex polar numbers:
z1.z2= r1.r2(cos(θ1+θ2) +isin(θ1+θ2) )
Putting the values
= 4
(cos(198) +isin(198))
3)
z= 1/2 + i
/2
r=
![\sqrt{(1/2)^(2)+(√(3)/2) ^(2) }](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6y86hnvdsojgrt9mk5k71g4dmk4brwxjfj.png)
r =
![√(1/4 +3/4) \\√(4/4)\\√(1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/maua23ufnw0uf89ojgbhgt3lfq29brrnra.png)
r=1
θ= tan^-1
![(√(3)/2 ) / (1/2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/y1d9ybxha34hun0x5y8446csc48uyhq4lw.png)
= tan^-1
![√(3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/3jkdozb6pk3x1px4ym8d058os0wzvynm5a.png)
=60
=π/3
hence
z= cos(π/3) +isin(π/3) !