Answer: This is some information I have gathered to help you since I cannot answer this directly sin θ + (cot θ)(cos θ)
= sin θ + (cos θ / sin θ)(cos θ)
= sin θ + cos² θ / sin θ
Since cos² θ = 1 - sin² θ,
= sin θ + (1 - sin² θ) / sin θ
= sin θ + 1 / sin θ - sin θ
= 1 / sin θ
= csc θ ∎ Sin(x) = tan(x) / [sqrt(1 + tan^2(x)]
Sin(theta) =3/4 / sqrt[1 + .75^2]
Sin(theta) =0.75 / sqrt[ 1.5625 ]
Sin(theta) =0.75 / 1.25
Sin(theta) = 0.60