483,667 views
41 votes
41 votes
Find a power series representation for the function. (give your power series representation centered at x = 0. ) f(x) = ln(5 − x)

User Yanis
by
3.3k points

1 Answer

17 votes
17 votes

Recall that for
|x|<1, we have the convergent geometric series


\displaystyle \sum_(n=0)^\infty x^n = \frac1{1-x}

Now, for
\left|\frac x5\right| < 1, we have


\frac1{5 - x} = \frac15 \cdot \frac1{1 - \frac x5} = \frac15 \displaystyle \sum_(n=0)^\infty \left(\frac x5\right)^n = \sum_(n=0)^\infty (x^n)/(5^(n+1))

Integrating both sides gives


\displaystyle \int (dx)/(5-x) = C + \int \sum_(n=0)^\infty (x^n)/(5^(n+1)) \, dx


\displaystyle -\ln(5-x) = C + \sum_(n=0)^\infty (x^(n+1))/(5^(n+1)(n+1))

If we let
x=0, the sum on the right side drops out and we're left with
C=-\ln(5).

It follows that


\displaystyle \ln(5-x) = \ln(5) - \sum_(n=0)^\infty (x^(n+1))/(5^(n+1)(n+1))

or


\displaystyle \ln(5-x) = \boxed{\ln(5) - \sum_(n=1)^\infty (x^n)/(5^n n)}

User Pismotality
by
3.0k points