195k views
0 votes
Find Sin (A+B) When SinA=(3/5) with 90 degrees < A < 270 degrees, and if CosB=(8/17) with 0 degrees < B< 180 degrees

1 Answer

6 votes

Recall the compound angle identity:


\sin(a+b)=\sin a\cos b+\cos a\sin b


90^\circ<a<270^\circ, so we expect
\cos a<0, and
0^\circ<b<180^\circ, so we expect
\sin b>0. Then by the Pythagorean identity,


\cos^2x+\sin^2x=1\implies\begin{cases}\cos a=-√(1-\sin^2a)=-\frac45\\\\\sin b=√(1-\cos^2b)=(15)/(17)\end{cases}

Then


\sin(a+b)=-(36)/(85)

User Naveen Kumar V
by
5.7k points